CMS Documentation

Release 92c46fb

Broad Institute

July 13, 2016

Contents

1	Cont	ents	1
	1.1	About CMS 2.0	1
	1.2	Installation	2
	1.3	Command line tools	2
	1.4	Sample workflow	17

Contents

1.1 About CMS 2.0

Composite of Multiple Signals (CMS) refers to a family of tests applied to population genetic datasets in order to (i) identify genomic regions that may have been subject to strong recent positive selection (a 'sweep') and (ii) to narrow signals of selection within such regions, in order to identify tractable lists of candidate variants for experimental scrutiny. In both of these cases, CMS requires (a) phased variation data for several populations, along with (b) the identity of the ancestral allele for a majority of sites listed. It was developed with humans in mind (e.g., the 1000 Genomes Project) but could in principle be applied to any diploid species with data in VCF or TPED format.

In its current instantiation (**'CMS 2.0'**), it includes scripts to (i) calculate a variety of selection metrics for each population, (ii) model the demographic history of the dataset using an exploratory approach, (iii) generate probability distributions for each selection metric from data simulated from demographic models, (iv) generate composite scores and (v) visualize signals of selection in the UCSC Genome Browser.

1.1.1 Background

The method used in CMS is described in greater detail in the following papers:

A Composite of Multiple Signals distinguishes causal variants in regions of positive selection Sharon R. Grossman, Ilya Shylakhter, Elinor K. Karlsson, Elizabeth H. Byrne, Shannon Morales, Gabriel Frieden, Elizabeth Hostetter, Elaine Angelino, Manuel Garber, Or Zuk, Eric S. Lander, Stephen F. Schaffner, and Pardis C. Sabeti *Science* 12 February 2010: **327** (5967), 883-886.Published online 7 January 2010 [DOI:10.1126/science.1183863]

Identifying recent adaptations in large-scale genomic data Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, Park DJ, Griesemer D, Karlsson EK, Wong SH, Cabili M, Adegbola RA, Bamezai RN, Hill AV, Vannberg FO, Rinn JL; 1000 Genomes Project, Lander ES, Schaffner SF, Sabeti PC. *Cell* 14 February 2013: **152** (4), 883-886.Published online 7 January 2010 [DOI:10.1016/j.cell.2013.01.035]

1.1.2 Coalescent simulations

CMS uses simulated population genetic data for a variety of purposes. For the purpose of flexibility, this pipeline is optimized for use with cosi 2, but it would theoretically be straightforward to substitute e.g. Hudson's ms.

Cosi2: an efficient simulator of exact and approximate coalescent with selection. Shlyakhter I, Sabeti PC, Schaffner SF. *Bioinformatics* 1 December 2014: **30** (23), 3427-9.Published online 22 August 2014 [DOI:10.1093/bioinformatics/btu562]

1.2 Installation

1.2.1 System dependencies

To be described in greater detail...

1.2.2 Manual Installation

Step 1: Install Conda

To use conda, you need to install the Conda package manager which is most easily obtained via the Miniconda Python distribution. Miniconda can be installed to your home directory without admin priviledges. On Broad Institute systems, you can make use of the ".anaconda3-4.0.0" dotkit.

Step 2: Configure Conda

Software used by the cms project is distributed through the bioconda channel for the conda package manager. It is necessary to add this channel to the conda config:

conda config --add channels bioconda

Step 3: Make a conda environment and install cms

It is recommended to install cms into its own conda directory. This ensures its dependencies do not interfere with other conda packages installed on your system. A new conda environment can be created with the following command, which will also install relevant cms dependencies. It is recommended to use the Python3 version of the environment file:

conda env create -f=conda-environment_py3.yml -n cms-env

Step 4: Activate the cms environment

In order to use cms, you will need to activate its conda environment:

```
source activate cms-env
```

1.3 Command line tools

1.3.1 scans.py

This script contains command-line utilities for calculating EHH-based scans for positive selection in genomes, including EHH, iHS, and XP-EHH.

usage: scans.py subcommand

Sub-commands:

selscan_file_conversion

Process a bgzipped-VCF (such as those included in the Phase 3 1000 Genomes release) into a gzipcompressed tped file of the sort expected by selscan.

[--codingFunctionClassFile CODINGFUNCTIONCI [--sampleMembershipFile SAMPLEMEMBERSHIPFI] [--filterPops FILTERPOPS [FILTERPOPS ...]] [--filterSuperPops FILTERSUPERPOPS [FILTERS [--loglevel {DEBUG, INFO, WARNING, ERROR, CRIT] [--version] [--tmpDir TMPDIR] [--tmpDirKeep] inputVCF genMap outPrefix outLocation chromosomeNum

Positional arguments:

inputVCF	Input VCF file
genMap	Genetic recombination map tsv file with four columns: (Chro- mosome, Position(bp), Rate(cM/Mb), Map(cM))
outPrefix	Output file prefix
outLocation	Output location
chromosomeNum	Chromosome number.

Options:

startBp=0	Coordinate in bp of start position. (default: %(default)s).
endBp	Coordinate in bp of end position.
ploidy=2	Number of chromosomes expected for each genotype. (default: $\%$ (default)s).
considerMultiAlle	lic=False Include multi-allelic variants in the output as separate records
rescaleGeneticDis	tance=False Genetic distance is rescaled to be out of 100.0 cM
includeLowQualA	Incestral=False Include variants where the ancestral information is low-quality (as indicated by lower-case x for AA=x in the VCF info column) (default: %(default)s).
codingFunctionCl	assFile A python class file containing a function used to code each genotype as '1' and '0'. coding_function(current_value, reference_allele, alternate_allele, ancestral_allele)
sampleMembersh	ipFile The call sample file containing four columns: sample, pop, super_pop, gender
filterPops	Populations to include in the calculation (ex. "FIN")
filterSuperPops	Super populations to include in the calculation (ex. "EUR")
loglevel=DEBUG	Verboseness of output. [default: %(default)s]
	Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-ICAL, EXCEPTION
version, -V	show program's version number and exit
tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
tmpDirKeep=Fals	w Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

selscan_ehh

Perform selscan's calculation of EHH.

Positional arguments:

Positional arguments:		
	inputTped	Input tped file
	outFile	Output filepath
	locusID	The locus ID
Options:		
	gapScale=20000	Gap scale parameter in bp. If a gap is encountered between two snps > GAP_SCALE and < MAX_GAP, then the genetic dis- tance is scaled by GAP_SCALE/GA (default: %(default)s).
	maf=0.05	Minor allele frequency. If a site has a MAF below this value, the program will not use it as a core snp. (default: %(default)s).
	threads=1	The number of threads to spawn during the calculation. Parti- tions loci across threads. (default: %(default)s).
	window=100000	When calculating EHH, this is the length of the window in bp in each direction from the query locus (default: %(default)s).
	cutoff=0.05	The EHH decay cutoff (default: %(default)s).
	maxExtend=10000	00 The maximum distance an EHH decay curve is allowed to extend from the core. Set <= 0 for no restriction. (default: %(default)s).
	loglevel=DEBUG	Verboseness of output. [default: %(default)s]
		Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT- ICAL, EXCEPTION
	version, -V	show program's version number and exit
	tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
	tmpDirKeep=Fals	e Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

selscan_ihs

Perform selscan's calculation of iHS.

Positional arguments:

	inputTped	Input tped file
	outFile	Output filepath
Options:		
	gapScale=20000	Gap scale parameter in bp. If a gap is encountered between two snps > GAP_SCALE and < MAX_GAP, then the genetic dis- tance is scaled by GAP_SCALE/GA (default: %(default)s).
	maf=0.05	Minor allele frequency. If a site has a MAF below this value, the program will not use it as a core snp. (default: %(default)s).
	threads=1	The number of threads to spawn during the calculation. Partitions loci across threads. (default: %(default)s).
	skipLowFreq=Fals	Se Do not include low frequency variants in the construction of haplotypes (default: %(default)s).
	dontWriteLeftRig	htiHH=False When writing out iHS, do not write out the constituent left and right ancestral and derived iHH scores for each locus.(default: %(default)s).
	truncOk=False	If an EHH decay reaches the end of a sequence before reaching the cutoff, integrate the curve anyway. Normal function is to disregard the score for that core. (default: %(default)s).
	loglevel=DEBUG	Verboseness of output. [default: %(default)s]
		Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT- ICAL, EXCEPTION
	version, -V	show program's version number and exit
	tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
	tmpDirKeep=Fals	e Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

selscan_nsl

Perform selscan's calculation of nSL.

	inputTped	Input tped file
	outFile	Output filepath
Options:		
	gapScale=20000	Gap scale parameter in bp. If a gap is encountered between two snps > GAP_SCALE and < MAX_GAP, then the genetic dis- tance is scaled by GAP_SCALE/GA (default: %(default)s).
	maf=0.05	Minor allele frequency. If a site has a MAF below this value, the program will not use it as a core snp. (default: %(default)s).

threads=1	The number of threads to spawn during the calculation. Partitions loci across threads. (default: %(default)s).
truncOk=False	If an EHH decay reaches the end of a sequence before reaching the cutoff, integrate the curve anyway. Normal function is to disregard the score for that core. (default: %(default)s).
maxExtendNsl=10	10 The maximum distance an nSL haplotype is allowed to extend from the core. Set <= 0 for no restriction. (default: %(default)s).
loglevel=DEBUG	Verboseness of output. [default: %(default)s]
	Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-ICAL, EXCEPTION
version, -V	show program's version number and exit
tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
tmpDirKeep=Fals	e Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

selscan_xpehh

Perform selscan's calculation of XPEHH.

Positional arguments:

I OSITIOIIUI			
	inputTped	Input tped file	
	outFile	Output filepath	
	inputRefTped	Input tped for the reference population to which the first is com- pared	
Options:			
	gapScale=20000	Gap scale parameter in bp. If a gap is encountered between two snps > GAP_SCALE and < MAX_GAP, then the genetic dis- tance is scaled by GAP_SCALE/GA (default: %(default)s).	
	maf=0.05	Minor allele frequency. If a site has a MAF below this value, the program will not use it as a core snp. (default: %(default)s).	
	threads=1	The number of threads to spawn during the calculation. Partitions loci across threads. (default: %(default)s).	
	truncOk=False	If an EHH decay reaches the end of a sequence before reaching the cutoff, integrate the curve anyway. Normal function is to disregard the score for that core. (default: %(default)s).	
	loglevel=DEBUG	Verboseness of output. [default: %(default)s]	
		Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-ICAL, EXCEPTION	
	version, -V	show program's version number and exit	
	tmpDir=/tmp	Base directory for temp files. [default: %(default)s]	

--tmpDirKeep=False Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

selscan_norm_nsl Undocumented

Normalize Selscan's nSL output

usage:	scans.py selscar	n_norm_nsl [-h] [bins BINS] [critPercent CRITPERCENT] [critValue CRITVALUE] [minSNPs MINSNPS] [qbins QBINS] [winSize WINSIZE] [bpWin] [loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EXC [version] [tmpDir TMPDIR] [tmpDirKeep] inputFiles [inputFiles]
Positional	arguments:	
	inputFiles	A list of files delimited by whitespace for joint normalization. Expected format for iHS/nSL files (no header):
		<locus name=""> <physical pos=""> <freq> <ihh1 sl1=""> <ihh2 sl0=""> <ihs nsl=""> Expected format for XP-EHH files (one line header): <locus name=""> <physical pos=""> <genetic pos=""> <freq1> <ihh1> <freq2> <ihh2> <xpehh></xpehh></ihh2></freq2></ihh1></freq1></genetic></physical></locus></ihs></ihh2></ihh1></freq></physical></locus>
Options:		
	bins=100	The number of frequency bins in [0,1] for score normalization (default: %(default)s)
	critPercent=-1.0	Set the critical value such that a SNP with iHS in the most ex- treme CRIT_PERCENT tails (two-tailed) is marked as an ex- treme SNP. Not used by default (default: %(default)s)
	critValue=2.0	Set the critical value such that a SNP with iHS > CRIT_VAL is marked as an extreme SNP. Default as in Voight et al. (default: %(default)s)
	minSNPs=10	Only consider a bp window if it has at least this many SNPs (default: %(default)s)
	qbins=20	Outlying windows are binned by number of sites within each window. This is the number of quantile bins to use. (default: %(default)s)
	winSize=100000	GThe non-overlapping window size for calculating the percent- age of extreme SNPs (default: %(default)s)
	bpWin=False	If set, will use windows of a constant bp size with varying num- ber of SNPs
	loglevel=DEBUG	Verboseness of output. [default: %(default)s]
		Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT- ICAL, EXCEPTION
	version, -V	show program's version number and exit
	tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
	tmpDirKeep=False	Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

Normalize	rmalize Selscan's iHS output	
usage:	scans.py selscar	n_norm_ihs [-h] [bins BINS] [critPercent CRITPERCENT] [critValue CRITVALUE] [minSNPs MINSNPS] [qbins QBINS] [winSize WINSIZE] [bpWin] [loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL,EX [version] [tmpDir TMPDIR] [tmpDirKeep] inputFiles [inputFiles]
Positional	arguments:	
	inputFiles	A list of files delimited by whitespace for joint normalization. Expected format for iHS/nSL files (no header):
		<locus name=""> <physical pos=""> <freq> <ihh1 sl1=""> <ihh2 sl0=""> <ihs nsl=""> Expected format for XP-EHH files (one line header): <locus name=""> <physical pos=""> <genetic pos=""> <freq1> <ihh1> <freq2> <ihh2> <xpehh></xpehh></ihh2></freq2></ihh1></freq1></genetic></physical></locus></ihs></ihh2></ihh1></freq></physical></locus>
Options:		
	bins=100	The number of frequency bins in [0,1] for score normalization (default: %(default)s)
	critPercent=-1.0	Set the critical value such that a SNP with iHS in the most ex- treme CRIT_PERCENT tails (two-tailed) is marked as an ex- treme SNP. Not used by default (default: %(default)s)
	critValue=2.0	Set the critical value such that a SNP with liHSl > CRIT_VAL is marked as an extreme SNP. Default as in Voight et al. (default: %(default)s)
	minSNPs=10	Only consider a bp window if it has at least this many SNPs (default: %(default)s)
	qbins=20	Outlying windows are binned by number of sites within each window. This is the number of quantile bins to use. (default: %(default)s)
	winSize=100000	GThe non-overlapping window size for calculating the percent- age of extreme SNPs (default: %(default)s)
	bpWin=False	If set, will use windows of a constant bp size with varying num- ber of SNPs
	loglevel=DEBUG	Verboseness of output. [default: %(default)s]
		Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-ICAL, EXCEPTION
	version, -V	show program's version number and exit
	tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
	tmpDirKeep=False	• Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.
on norm	vnahh Undocumented	

selscan_norm_ihs Undocumented

selscan_norm_xpehh Undocumented

Normalize Selscan's XPEHH output

usage:	scans.py selsca	<pre>n_norm_xpehh [-h] [bins BINS] [critPercent CRITPERCENT] [critValue CRITVALUE] [minSNPs MINSNPS] [qbins QBINS] [winSize WINSIZE] [bpWin] [loglevel {DEBUG,INFO,WARNING,ERROR,CRITICAL, [version] [tmpDir TMPDIR] [tmpDirKeep] inputFiles [inputFiles]</pre>
Positiona	l arguments:	
	inputFiles	A list of files delimited by whitespace for joint normalization. Expected format for iHS/nSL files (no header):
		
Options:		
	bins=100	The number of frequency bins in [0,1] for score normalization (default: %(default)s)
	critPercent=-1.0	Set the critical value such that a SNP with iHS in the most ex- treme CRIT_PERCENT tails (two-tailed) is marked as an ex- treme SNP. Not used by default (default: %(default)s)
	critValue=2.0	Set the critical value such that a SNP with liHSI > CRIT_VAL is marked as an extreme SNP. Default as in Voight et al. (default: %(default)s)
	minSNPs=10	Only consider a bp window if it has at least this many SNPs (default: %(default)s)
	qbins=20	Outlying windows are binned by number of sites within each window. This is the number of quantile bins to use. (default: %(default)s)
	winSize=100000	GThe non-overlapping window size for calculating the percent- age of extreme SNPs (default: %(default)s)
	bpWin=False	If set, will use windows of a constant bp size with varying num- ber of SNPs
	loglevel=DEBUG	Verboseness of output. [default: %(default)s]
		Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT- ICAL, EXCEPTION
	version, -V	show program's version number and exit
	tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
	tmpDirKeep=Fals	e Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

store_selscan_results_in_db

Aggregate results from selscan in to a SQLite database via helper JSON metadata file.

outFile

Options:

loglevel=INFO	Verboseness of output. [default: %(default)s]
	Possible choices: DEBUG, INFO, WARNING, ERROR, CRIT-ICAL, EXCEPTION
version, -V	show program's version number and exit
tmpDir=/tmp	Base directory for temp files. [default: %(default)s]
tmpDirKeep=Fals	• Keep the tmpDir if an exception occurs while running. Default is to delete all temp files at the end, even if there's a failure.

1.3.2 cms_modeller.py

This script contains command-line utilities for exploratory fitting of demographic models to population genetic data.

Output SQLite filepath

```
usage: cms_modeller.py [-h] {target_stats,bootstrap,point,grid,optimize} ...
```

Sub-commands:

target_stats perform per-site(/per-site-pair) calculations of population summary statistics for model target values

Positional arguments:

	inputTpeds	comma-delimited list of input tped files (only one file per pop being modelled; must run chroms separately or concatenate)		
	recomFile	recombination map		
	regions	tab-separated file with putative neutral regions		
	out	outfile prefix		
Options:				
	freqs=False	calculate summary statistics from within-population allele fre- quencies		
	ld=False	calculate summary statistics from within-population linkage dis- equilibrium		
	fst=False	calculate summary statistics from population comparison using allele frequencies		

bootstrap perform bootstrap estimates of population summary statistics in order to finalize model target values

usage: cms_mode	ller.py bootstra	⊳ [−h]	[in_freqs	IN_FREQS]	[in_	_ld	IN_	LD]
		[i:	n_fst IN_FSI]				
		nBoo	tstrapReps c	ut				

Positional arguments:

	nBootstrapReps	number of bootstraps to perform in order to estimate standard error of the dataset (should converge for reasonably small n)	
	out	outfile prefix	
Options:			
	in_freqs	comma-delimited list of infiles with per-site calculations for pop- ulation. One file per population – for bootstrap estimates of genome-wide values, should first concatenate per-chrom files	
	in_ld	comma-delimited list of infiles with per-site-pair calculations for population. One file per population – for bootstrap estimates of genome-wide values, should first concatenate per-chrom files	
	in_fst	comma-delimited list of infiles with per-site calculations for pop- ulation pair. One file per population-pair – for bootstrap es- timates of genome-wide values, should first concatenate per- chrom files	

point run simulates of a point in parameter-space

Positional arguments:

inputParamFile	file with model specifications for input	
nCoalescentReps	num reps	
outputDir	location to write cosi output	

Options:

cosiBuild=/Users/v	cosiBuild=/Users/vitti/Desktop/COSI_DEBUG_TEST/cosi-2.0/coalescent which version of cosi to run? (*automate installation)				
dropSings	randomly thin global singletons from output dataset (i.e., to model ascertainment bias)				
genmapRandomR	genmapRandomRegions=False cosi option to sub-sample genetic map randomly from input				
stopAfterMinutes	cosi option to terminate simulations				
calcError	file specifying dimensions of error function to use. if unspeci- fied, defaults to all. first line = stats, second line = pops				
targetvalsFile	targetvalsfile for model				
plotStats=False	visualize goodness-of-fit to model targets				

grid run grid search

Positional arguments:

inputParamFile	e file with model specifications for input		
nCoalescentReps	num reps		
outputDir	location to write cosi output		
grid_inputdimensionsfile file with specifications of grid search. each parameter to vary is indicated: KEY INDEX [VALUES]			

Options:

cosiBuild=/Users/vitti/Desktop/COSI_DEBUG_TEST/cosi-2.0/coalescent which version of cosi to run? (*automate installation)				
dropSings	randomly thin global singletons from output dataset (i.e., to model ascertainment bias)			
genmapRandomRegions=False cosi option to sub-sample genetic map randomly from input				
stopAfterMinutes	cosi option to terminate simulations			
calcError	file specifying dimensions of error function to use. if unspeci- fied, defaults to all. first line = stats, second line = pops			

optimize run optimization algorithm to fit model parameters

Positional arguments:

	inputParamFile	file with model specifications for input	
	nCoalescentReps	num reps	
	outputDir	location to write cosi output	
	optimize_inputdimensionsfile file with specifications of optimization. each parame- ter to vary is indicated: KEY INDEX		
Options:			
	cosiBuild=/Users/vitti/Desktop/COSI_DEBUG_TEST/cosi-2.0/coalescent which version of cosi to run? (*automate installation)		
	dropSings	randomly thin global singletons from output dataset (i.e., to	

model ascertainment bias)

genmapRandomR	egions=False cosi option to sub-sample genetic map randomly from input		
stopAfterMinutes	cosi option to terminate simulations		
calcError	file specifying dimensions of error function to use. if unspeci- fied, defaults to all. first line = stats, second line = pops		
stepSize	scaled step size (i.e. whole range $= 1$)		
method=SLSQP	algorithm to pass to scipy.optimize		

1.3.3 likes_from_model.py

This script contains command-line utilities for generating probability distributions for component scores from prespecified demographic model(s).

Sub-commands:

run_neut_sims run neutral simulations

Positional arguments:

n	num replicates to run
inputParamFile	file with model specifications for input
outputDir	location to write cosi output

Options:

```
--cosiBuild=/Users/vitti/Desktop/COSI_DEBUG_TEST/cosi-2.0/coalescent
which version of cosi to run? (*automate installation)
```

dropSings	randomly thin global singletons from output dataset to model
	ascertainment bias

--genmapRandomRegions=False cosi option to sub-sample genetic map randomly from input

get_sel_trajs run forward simulations of selection trajectories and perform rejection sampling to populate selscenarios by final allele frequency before running coalescent simulations for entire sample

Positional arguments:

	nSimsPerBin	number of selection traje bin	ctories to generate per allele frequency	
	maxSteps	number of attempts to ge sampling selection coeffic	enerate a selection trajectory before re- cient and start time.	
	inputParamFile	file with model specificat	ions for input	
	outputDir	location to write cosi out	put	
Options:				
cosiBuild=/Users/vitti/Desktop/COSI_DEBUG_TEST/cosi-2.0/coalescent which version of cosi to run? (*automate installation)				
	dropSings	randomly thin global sin ascertainment bias	ngletons from output dataset to model	
	genmapRandomRo	e gions=False cosi option from input	to sub-sample genetic map randomly	
	freqRange=.0595	range of final selected all	ele frequencies to simulate, e.g0595	
	nBins=9	number of frequency bins	5	
run_sel_sims r	un sel. simulations			
usage:	likes_from_mode.	l.py run_sel_sims	<pre>[-h] [cosiBuild COSIBUILD] [dropSings DROPSINGS] [genmapRandomRegions] [freqRange FREQRANGE] [nBins NBINS] n trajDir inputParamFile outputDir</pre>	
Positional	arguments:			
	n	num replicates to run per	sel scenario	
	trajDir	location of simulated get_sel_trajs)	trajectories (i.e. outputDir from	
	inputParamFile	file with model specificat	ions for input	
	outputDir	location to write cosi out	put	
Options:				
	cosiBuild=/Users/vitti/Desktop/COSI_DEBUG_TEST/cosi-2.0/coalescent which version of cosi to run? (*automate installation)			
	dropSings	randomly thin global singletons from output dataset to model ascertainment bias		
	genmapRandomRegions=False cosi option to sub-sample genetic map randomly from input			
	freqRange=.0595	range of final selected all	ele frequencies to simulate, e.g0595	
	nBins=9	number of frequency bins	5	
scores_from_si	ms get scores from sin	nulations		
usage:	likes_from_mode	l.py scores_from_s	ims [-h] [inputTped INPUTTPED] [inputIhs INPUTIHS]	

[--inputXpehh INPUTXPEHH] [--ihs]

[--inputdelIhh INPUTDELIHH]

[--delIhh] [--xpehh XPEHH] [--fst_deldaf FST_DELDAF] [--normalizeIhs NORMALIZEIHS] [--normalizeDelIhh NORMALIZEDELIHH] [--normalizeXpehh NORMALIZEXPEHH] outputFilename

Positional arguments:

	outputFilename	where to write scorefile
Options:		
	inputTped	tped from which to calculate score
	inputIhs	iHS from which to calculate delihh
	inputdelIhh	delIhh from which to calculate norm
	inputXpehh	Xp-ehh from which to calculate norm
	ihs=False	Undocumented
	delIhh=False	Undocumented
	xpehh	inputTped for altpop
	fst_deldaf inputTped for altpop	
normalizeIhs filename for parameters to normalize to; if not given the default normalize file to its own global dist		filename for parameters to normalize to; if not given then will by default normalize file to its own global dist
	normalizeDelIhh	filename for parameters to normalize to; if not given then will by default normalize file to its own global dist
	normalizeXpehh	filename for parameters to normalize to; if not given then will by default normalize file to its own global dist

likes_from_scores get component score probability distributions from scores

```
usage: likes_from_model.py likes_from_scores [-h] [--thinToSize] [--ihs]
    [--delihh] [--xp] [--deldaf]
    [--fst] [--freqRange FREQRANGE]
    [--nBins NBINS]
    neutFile selFile selPos
    nLikesBins outPrefix
```

Positional arguments:		
	neutFile	file with scores for neutral scenarios (normalized if necessary)
	selFile	file with scores for selected scenarios (normalized if necessary)
	selPos	position of causal variant
	nLikesBins	number of bins to use for histogram to approximate probability density function
	outPrefix	save file as
Options:	thinToSize=False	subsample from simulated SNPs (since nSel << nLinked < nNeut)
	ihs=False	Undocumented

delihh=False	Undocumented
xp=False	Undocumented
deldaf=False	Undocumented
fst=False	Undocumented
freqRange=.0595	range of final selected allele frequencies to simulate, e.g0595
nBins=9	number of frequency bins

1.3.4 composite.py

This script contains command-line utilities for combining component statistics – i.e., the final step of the CMS 2.0 pipeline.

```
usage: composite.py [-h]
        {poppair,outgroups,bayesian_gw,bayesian_region,ml_region}
        ...
```

Sub-commands:

poppair collate all component statistics for a given population pair (as a prerequisite to more sophisticated group comparisons

Positional arguments:

in_ihs_file	file with normalized iHS values for putative selpop
in_delihh_file	file with normalized delIhh values for putative selpop
in_xp_file	file with normalized XP-EHH values
in_fst_deldaf_file	file with Fst, delDaf values for poppair
outfile	file to write with collated scores

Options:

--xp_reverse_pops=False include if the putative selpop for outcome is the altpop in XPEHH (and vice versa)

--deldaf_reverse_pops=False finclude if the putative selpop for outcome is the altpop in delDAF (and vice versa)

outgroups combine scores from comparisons of a putative selected pop to 2+ outgroups.

usage: composite.py outgroups [-h] infiles likesfile outfile

Positional arguments:

infiles	comma-delimited set of pop-pair comparisons
likesfile	text file where probability distributions are specified for compo- nent scores
outfile	file to write with finalized scores

bayesian_gw default algorithm and weighting, genome-wide

usage: composite.py bayesian_gw [-h] inputparamfile

Positional arguments:

inputparamfile file with specifications for input

bayesian_region default algorithm and weighting, within-region

```
usage: composite.py bayesian_region [-h]
```

chrom startBp endBp selPop altPops demModel

Positional arguments:

chrom	chromosome containing region
startBp	start location of region in basepairs
endBp	end location of region in basepairs
selPop	Undocumented
altPops	comma-delimited
demModel	Undocumented

ml_region machine learning algorithm (within-region)

```
usage: composite.py ml_region [-h] chrom startBp endBp selPop altPops demModel
```

Positional arguments:

chrom	chromosome containing region
startBp	start location of region in basepairs
endBp	end location of region in basepairs
selPop	Undocumented
altPops	comma-delimited
demModel	Undocumented

1.4 Sample workflow

CMS provides a computational framework to explore signals of natural selection in diploid organisms. This section describes how to do so at an abstract level.

1.4.1 Preliminary considerations

CMS is a computational and statistical framework for exploring the evolution of populations within a species at a genomic level. To that end, the user must first provide a dataset containing genotype calls for individuals in at least one putative selected population and at least one putative 'outgroup.' CMS 2.0 is designed to be flexible with respect to the number and configuration of input populations – that is, given input of however many populations, the user can easily calculate CMS scores for any configuration of these populations. Nonetheless, CMS still relies on the user to define these populations appropriately.

- To determine or confirm appropriate population groupings, identify outliers, etc., we recommend that users first characterize their dataset using such methods as likeliness clustering (e.g. STRUCTURE), principal components analysis, or phylogenetic methods (see e.g. SNPRelate)
- Each population should be randomly thinned to the same number of individuals, none of whom should be related within the past few generations.

• Larger samples are generally preferable (e.g. 50-100+ diploid individuals per population). However, depending on such factors as the landscape of recombination in the species, the quality/density of genotype data, and the extent of neutral genetic divergence between represented populations, it may be possible to leverage smaller datasets. As CMS necessitates the generation of a demographic model for the given dataset, the user is advised to use their model to generate simulated data with which to perform power estimations.

1.4.2 Data formatting

CMS requires the user to provide population genetic (i.e., within-species) diversity data, including genotype phase and allele polarity.

- If your dataset is **unphased**, you can preprocess it using a program like Beagle or PLINK.
- The identity of the **ancestral allele** at each site is typically determined by comparison to outgroups at orthologous sites. Inferred ancestral sequence is available for a number of species through e.g. Ensembl via their ftp. You can use VCFtools to populate the "AA=" section of your VCF's INFO field.
- In most cases, the user will want to provide a **genetic recombination map**. If this is unavailable, CMS will assume uniform recombination rates when calculating haplotype scores. Human recombination maps are available from the HapMap Project.
- CMS works with TPED datafiles, and includes support to convert from VCF using the command line tool scans.py.

1.4.3 Demographic modeling

CMS combines several semi-independent component tests for selection in a Bayesian or Machine Learning framework. In the former case, a demographic model for the species in question is critical in order to furnish posterior distributions of scores for said component tests under alternate hypotheses of neutrality or selection. Put otherwise: a demographic model is a (conjectural) descriptive historical account of our dataset, including population sizes and migration rates across time, that can be used to generate simulated data that 'looks like' our original dataset. We then simulate many scenarios of selection in order and calculate the distributions of component scores for adaptive, linked, and neutral variants. These distributions form the basis of our Bayesian classifier. We can also circumvent the need to define posterior score distributions by using simulated data as training data for Machine Learning implementations of CMS.

Our modeling framework is designed to accomodate an arbitrary number of populations in a tree of arbitrary complexity; as such, it is designed to be exploratory, allowing users to iteratively perform optimizations while visualizing the effect on model goodness-of-fit. For rigorous demographic inference (i.e., in the case of a model with known topology and tractably few parameters), users may consider programs such as dadi or diCal.

Following Schaffner et al 2005, our framework calculates a range of population summary statistics as target values, and defines error as the Root Mean Square discrepancy between target and simulated values. These summary statistics are calculated by bootstrap estimate from user-specified putative neutral regions. For human populations, the Neutral Regions Explorer is a useful resource.

The user must specify tree topology and ranges for parameter values. These can be added and removed as desired through the script params.py. After target values have been estimated and model topology defined, the user can iteratively search through subsets of parameter-space using cms_modeller.py with a masterfile specifying search input.

1.4.4 Calculating selection statistics

CMS packages a number of previously described population genetic tests for recent positive selection. Haplotype scores are calculated using selscan.

1.4.5 Combining scores

CMS 2.0 allows users to define CMS scores flexibly with respect to (i) number and identity of putative selected/neutral populations, (ii) assumed demographic model, (iii) input component scores, (iv) method of score combination. In each case the user should motivate their choices and consider how robust a putative signal of selection is to variation or arbitrariness in these factors.

1.4.6 Identifying regions

CMS is motivated by the need to resolve signals of selection – that is, to identify genetic variants that confer adaptive phenotypes. Because selective events can alter patterns of population genetic diversity across large genomic regions, we take a two-step approach to this goal: we first identify putative selected regions (using CMS, another framework, prior knowledge, etc.), and then examine each region with CMS to identify a tractable list of candidate variants for further scrutiny.

1.4.7 Localizing signals

Once regions are defined, we can reapply our composite framework in order to thin our list of candidate variants for further scrutiny and prioritize those sites that have the strongest evidence of selection (or other compelling evidence, e.g. overlap with known or predicted functional elements).